Target - Integration Specifications
Target Sales
This is the pipeline for the Target Sales data. Note that there's also the Target Inventory Pipeline.
Raw Data
This pipeline incorperates two raw-data files:
retail.target_br_2yr_weekly_gm_tcin_loc
(the historical file)retail.target_daily_sales_tcin_loc
(the current data)
Mappings
The mappings between the raw data and the final data are demonstrated in the following table.
URS Sales Report
sales_report_id *
VARCHAR(255)
SALES_DATE
sales_date
DATE
SALES_DATE
source_sales_date
DATE
location_id *
VARCHAR(255)
product_id *
VARCHAR(255)
SALE_AMOUNT
dollar_sales
DECIMAL(24,10)
SALE_QUANTITY
unit_sales
DECIMAL(24,10)
original_currency *
CHAR(3)
currency_conversion_rate *
DECIMAL(24,10)
converted_currency *
CHAR(3)
__file_name *
VARCHAR(255)
__source_id *
VARCHAR(64)
__source_display_name *
VARCHAR(255)
__loaded_at *
TIMESTAMP
__synced_at *
TIMESTAMP
* Generated in the pipeline
URS Products
product_id *
VARCHAR(255)
ITEM_DESCRIPTION
listing_sku *
VARCHAR(255)
ITEM_DESCRIPTION
master_sku *
VARCHAR(255)
"upc"
reporting_level
VARCHAR(255)
ITEM_DESCRIPTION
product_name
VARCHAR(255)
BARCODE
upc
VARCHAR(255)
BRAND_NAME
brand_name
VARCHAR(255)
department
VARCHAR(255)
category
VARCHAR(255)
subcategory
VARCHAR(255)
product_class
VARCHAR(255)
product_type
VARCHAR(255)
concat( split_part(item_description, ' ', -2), ' ', split_part(item_description, ' ', -1))
product_size
VARCHAR(255)
split_part(item_description, ' ', -1)
unit_of_measure
VARCHAR(255)
pack_count
DECIMAL(0,6)
__file_name *
VARCHAR(255)
__source_id *
VARCHAR(64)
__loaded_at *
TIMESTAMP
__synced_at *
TIMESTAMP
* Generated in the pipeline
URS Locations
target_br_2yr_weekly_gm_tcin_loc
Destination Field
Data Type
Description
location_id *
VARCHAR(255)
"Target"
retailer_name
VARCHAR(255)
platform.store_locations.store_name
store_name
VARCHAR(255)
market_name
VARCHAR(255)
warehouse_name
VARCHAR(255)
retailer_division
VARCHAR(255)
LOCATION_ID
retailer_store_id
VARCHAR(255)
platform.store_locations.address
address1
VARCHAR(255)
address2
VARCHAR(255)
platform.store_locations.city
city
VARCHAR(255)
platform.store_locations.state
state
VARCHAR(255)
platform.store_locations.country
country
VARCHAR(255)
platform.store_locations.zip_code
zipcode
VARCHAR(255)
TRUE
is_store_level
BOOLEAN
FALSE
is_warehouse_level
BOOLEAN
FALSE
is_market_level
BOOLEAN
__file_name *
VARCHAR(255)
__source_id *
VARCHAR(64)
__loaded_at *
TIMESTAMP
__synced_at *
TIMESTAMP
* Generated in the pipeline
URS Specific to Target Sales
The destination table that we map other Target metrics into is urs.specific_to_target
. All of these should be available in the explore for this source.
sales_report_id VARCHAR(255),
vendor_id VARCHAR(255),
barcode VARCHAR(255),
tcin VARCHAR(255),
dpci VARCHAR(255),
manufacturer_style VARCHAR(255),
dept VARCHAR(255),
class VARCHAR(255),
origination_channel VARCHAR(255),
reporting_channel VARCHAR(255),
fulfillment_type VARCHAR(255),
drive_up_sale_a DECIMAL(24,10),
drive_up_sale_q BIGINT,
location_id VARCHAR(255),
circular_sale_amount DECIMAL(24,10),
circular_sale_quantity BIGINT,
clearance_sale_amount DECIMAL(24,10),
clearance_sale_quantity BIGINT,
promo_sale_amount DECIMAL(24,10),
promo_sale_quantity BIGINT,
regular_sale_amount DECIMAL(24,10),
regular_sale_quantity BIGINT,
circle_sale_amount DECIMAL(24,10),
circle_sale_quantity BIGINT,
mature_sale_amount DECIMAL(24,10),
mature_sale_quantity BIGINT,
comparable_sale_amount DECIMAL(24,10),
comparable_sale_quantity BIGINT,
ad_comparable_sale_amount DECIMAL(24,10),
ad_comparable_sale_quantity BIGINT,
brand_id VARCHAR(255),
return_guest_amount DECIMAL(24,10),
return_guest_quantity BIGINT,
shipt_app_sale_a DECIMAL(24,10),
shipt_app_sale_q BIGINT,
shipt_target_sale_a DECIMAL(24,10),
shipt_target_sale_q BIGINT,
__file_name VARCHAR(255),
__source_id VARCHAR(64),
__loaded_at TIMESTAMP,
__synced_at TIMESTAMP
Pipeline architecture
This pipeline first brings in the historical data and transforms it, inserting it into URS schema. Then the pipeline runs for the regular extracts. In both cases, we join to platform.store_locations
to bring in store level data.
Last updated
Was this helpful?