Target - Integration Specifications

Target Sales

This is the pipeline for the Target Sales data. Note that there's also the Target Inventory Pipeline.

Raw Data

This pipeline incorperates two raw-data files:

  • retail.target_br_2yr_weekly_gm_tcin_loc (the historical file)

  • retail.target_daily_sales_tcin_loc (the current data)

Mappings

The mappings between the raw data and the final data are demonstrated in the following table.

URS Sales Report

Source Field
Destination Field
Data Type
Description

sales_report_id *

VARCHAR(255)

SALES_DATE

sales_date

DATE

SALES_DATE

source_sales_date

DATE

location_id *

VARCHAR(255)

product_id *

VARCHAR(255)

SALE_AMOUNT

dollar_sales

DECIMAL(24,10)

SALE_QUANTITY

unit_sales

DECIMAL(24,10)

original_currency *

CHAR(3)

currency_conversion_rate *

DECIMAL(24,10)

converted_currency *

CHAR(3)

__file_name *

VARCHAR(255)

__source_id *

VARCHAR(64)

__source_display_name *

VARCHAR(255)

__loaded_at *

TIMESTAMP

__synced_at *

TIMESTAMP

* Generated in the pipeline

URS Products

Source Field
Destination Field
Data Type
Description

product_id *

VARCHAR(255)

ITEM_DESCRIPTION

listing_sku *

VARCHAR(255)

ITEM_DESCRIPTION

master_sku *

VARCHAR(255)

"upc"

reporting_level

VARCHAR(255)

ITEM_DESCRIPTION

product_name

VARCHAR(255)

BARCODE

upc

VARCHAR(255)

BRAND_NAME

brand_name

VARCHAR(255)

department

VARCHAR(255)

category

VARCHAR(255)

subcategory

VARCHAR(255)

product_class

VARCHAR(255)

product_type

VARCHAR(255)

concat( split_part(item_description, ' ', -2), ' ', split_part(item_description, ' ', -1))

product_size

VARCHAR(255)

split_part(item_description, ' ', -1)

unit_of_measure

VARCHAR(255)

pack_count

DECIMAL(0,6)

__file_name *

VARCHAR(255)

__source_id *

VARCHAR(64)

__loaded_at *

TIMESTAMP

__synced_at *

TIMESTAMP

* Generated in the pipeline

URS Locations

target_br_2yr_weekly_gm_tcin_loc

Destination Field

Data Type

Description

location_id *

VARCHAR(255)

"Target"

retailer_name

VARCHAR(255)

platform.store_locations.store_name

store_name

VARCHAR(255)

market_name

VARCHAR(255)

warehouse_name

VARCHAR(255)

retailer_division

VARCHAR(255)

LOCATION_ID

retailer_store_id

VARCHAR(255)

platform.store_locations.address

address1

VARCHAR(255)

address2

VARCHAR(255)

platform.store_locations.city

city

VARCHAR(255)

platform.store_locations.state

state

VARCHAR(255)

platform.store_locations.country

country

VARCHAR(255)

platform.store_locations.zip_code

zipcode

VARCHAR(255)

TRUE

is_store_level

BOOLEAN

FALSE

is_warehouse_level

BOOLEAN

FALSE

is_market_level

BOOLEAN

__file_name *

VARCHAR(255)

__source_id *

VARCHAR(64)

__loaded_at *

TIMESTAMP

__synced_at *

TIMESTAMP

* Generated in the pipeline

URS Specific to Target Sales

The destination table that we map other Target metrics into is urs.specific_to_target. All of these should be available in the explore for this source.

    sales_report_id VARCHAR(255),
    vendor_id VARCHAR(255),
    barcode VARCHAR(255),
    tcin VARCHAR(255),
    dpci VARCHAR(255),
    manufacturer_style VARCHAR(255),
    dept VARCHAR(255),
    class VARCHAR(255),
    origination_channel VARCHAR(255),
    reporting_channel VARCHAR(255),
    fulfillment_type VARCHAR(255),
    drive_up_sale_a DECIMAL(24,10),
    drive_up_sale_q BIGINT,
    location_id VARCHAR(255),
    circular_sale_amount DECIMAL(24,10),
    circular_sale_quantity BIGINT,
    clearance_sale_amount DECIMAL(24,10),
    clearance_sale_quantity BIGINT,
    promo_sale_amount DECIMAL(24,10),
    promo_sale_quantity BIGINT,
    regular_sale_amount DECIMAL(24,10),
    regular_sale_quantity BIGINT,
    circle_sale_amount DECIMAL(24,10),
    circle_sale_quantity BIGINT,
    mature_sale_amount DECIMAL(24,10),
    mature_sale_quantity BIGINT,
    comparable_sale_amount DECIMAL(24,10),
    comparable_sale_quantity BIGINT,
    ad_comparable_sale_amount DECIMAL(24,10),
    ad_comparable_sale_quantity BIGINT,
    brand_id VARCHAR(255),
    return_guest_amount DECIMAL(24,10),
    return_guest_quantity BIGINT,
    shipt_app_sale_a DECIMAL(24,10),
    shipt_app_sale_q BIGINT,
    shipt_target_sale_a DECIMAL(24,10),
    shipt_target_sale_q BIGINT,
    __file_name VARCHAR(255),
    __source_id VARCHAR(64),
    __loaded_at TIMESTAMP,
    __synced_at TIMESTAMP

Pipeline architecture

This pipeline first brings in the historical data and transforms it, inserting it into URS schema. Then the pipeline runs for the regular extracts. In both cases, we join to platform.store_locations to bring in store level data.

Last updated

Was this helpful?